3.1.46 \(\int \frac {1}{(a+b \sinh ^2(c+d x))^2} \, dx\) [46]

Optimal. Leaf size=95 \[ \frac {(2 a-b) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a-b)^{3/2} d}-\frac {b \cosh (c+d x) \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )} \]

[Out]

1/2*(2*a-b)*arctanh((a-b)^(1/2)*tanh(d*x+c)/a^(1/2))/a^(3/2)/(a-b)^(3/2)/d-1/2*b*cosh(d*x+c)*sinh(d*x+c)/a/(a-
b)/d/(a+b*sinh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3263, 12, 3260, 214} \begin {gather*} \frac {(2 a-b) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} d (a-b)^{3/2}}-\frac {b \sinh (c+d x) \cosh (c+d x)}{2 a d (a-b) \left (a+b \sinh ^2(c+d x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sinh[c + d*x]^2)^(-2),x]

[Out]

((2*a - b)*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a - b)^(3/2)*d) - (b*Cosh[c + d*x]*Sinh[c
 + d*x])/(2*a*(a - b)*d*(a + b*Sinh[c + d*x]^2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3260

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[1/(a + (a + b)*ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]

Rule 3263

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si
n[e + f*x]^2)^(p + 1)/(2*a*f*(p + 1)*(a + b))), x] + Dist[1/(2*a*(p + 1)*(a + b)), Int[(a + b*Sin[e + f*x]^2)^
(p + 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && N
eQ[a + b, 0] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \sinh ^2(c+d x)\right )^2} \, dx &=-\frac {b \cosh (c+d x) \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}-\frac {\int \frac {-2 a+b}{a+b \sinh ^2(c+d x)} \, dx}{2 a (a-b)}\\ &=-\frac {b \cosh (c+d x) \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}+\frac {(2 a-b) \int \frac {1}{a+b \sinh ^2(c+d x)} \, dx}{2 a (a-b)}\\ &=-\frac {b \cosh (c+d x) \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}+\frac {(2 a-b) \text {Subst}\left (\int \frac {1}{a-(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{2 a (a-b) d}\\ &=\frac {(2 a-b) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a-b)^{3/2} d}-\frac {b \cosh (c+d x) \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 96, normalized size = 1.01 \begin {gather*} \frac {(2 a-b) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a-b)^{3/2} d}-\frac {b \sinh (2 (c+d x))}{2 a (a-b) d (2 a-b+b \cosh (2 (c+d x)))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sinh[c + d*x]^2)^(-2),x]

[Out]

((2*a - b)*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a - b)^(3/2)*d) - (b*Sinh[2*(c + d*x)])/(
2*a*(a - b)*d*(2*a - b + b*Cosh[2*(c + d*x)]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(284\) vs. \(2(83)=166\).
time = 1.20, size = 285, normalized size = 3.00

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {b \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a \left (a -b \right )}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a \left (a -b \right )}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}-\frac {\left (-b +2 a \right ) \left (\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{a -b}}{d}\) \(285\)
default \(\frac {-\frac {2 \left (\frac {b \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a \left (a -b \right )}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a \left (a -b \right )}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}-\frac {\left (-b +2 a \right ) \left (\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{a -b}}{d}\) \(285\)
risch \(\frac {2 a \,{\mathrm e}^{2 d x +2 c}-b \,{\mathrm e}^{2 d x +2 c}+b}{d a \left (a -b \right ) \left (b \,{\mathrm e}^{4 d x +4 c}+4 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+b \right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \sqrt {a^{2}-a b}-b \sqrt {a^{2}-a b}-2 a^{2}+2 a b}{b \sqrt {a^{2}-a b}}\right ) b}{4 \sqrt {a^{2}-a b}\, \left (a -b \right ) d a}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \sqrt {a^{2}-a b}-b \sqrt {a^{2}-a b}-2 a^{2}+2 a b}{b \sqrt {a^{2}-a b}}\right )}{2 \sqrt {a^{2}-a b}\, \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \sqrt {a^{2}-a b}-b \sqrt {a^{2}-a b}+2 a^{2}-2 a b}{b \sqrt {a^{2}-a b}}\right ) b}{4 \sqrt {a^{2}-a b}\, \left (a -b \right ) d a}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \sqrt {a^{2}-a b}-b \sqrt {a^{2}-a b}+2 a^{2}-2 a b}{b \sqrt {a^{2}-a b}}\right )}{2 \sqrt {a^{2}-a b}\, \left (a -b \right ) d}\) \(421\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sinh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(1/2*b/a/(a-b)*tanh(1/2*d*x+1/2*c)^3+1/2*b/a/(a-b)*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4-2*a*t
anh(1/2*d*x+1/2*c)^2+4*b*tanh(1/2*d*x+1/2*c)^2+a)-(-b+2*a)/(a-b)*(1/2*((-b*(a-b))^(1/2)+b)/a/(-b*(a-b))^(1/2)/
((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/2*((
-b*(a-b))^(1/2)-b)/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(
-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 681 vs. \(2 (83) = 166\).
time = 0.43, size = 1617, normalized size = 17.02 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*a^2*b - 4*a*b^2 + 4*(2*a^3 - 3*a^2*b + a*b^2)*cosh(d*x + c)^2 + 8*(2*a^3 - 3*a^2*b + a*b^2)*cosh(d*x +
 c)*sinh(d*x + c) + 4*(2*a^3 - 3*a^2*b + a*b^2)*sinh(d*x + c)^2 + ((2*a*b - b^2)*cosh(d*x + c)^4 + 4*(2*a*b -
b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (2*a*b - b^2)*sinh(d*x + c)^4 + 2*(4*a^2 - 4*a*b + b^2)*cosh(d*x + c)^2 +
 2*(3*(2*a*b - b^2)*cosh(d*x + c)^2 + 4*a^2 - 4*a*b + b^2)*sinh(d*x + c)^2 + 2*a*b - b^2 + 4*((2*a*b - b^2)*co
sh(d*x + c)^3 + (4*a^2 - 4*a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a^2 - a*b)*log((b^2*cosh(d*x + c)^4 +
 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4 + 2*(2*a*b - b^2)*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d
*x + c)^2 + 2*a*b - b^2)*sinh(d*x + c)^2 + 8*a^2 - 8*a*b + b^2 + 4*(b^2*cosh(d*x + c)^3 + (2*a*b - b^2)*cosh(d
*x + c))*sinh(d*x + c) - 4*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)
*sqrt(a^2 - a*b))/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cos
h(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x +
 c))*sinh(d*x + c) + b)))/((a^4*b - 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 + 4*(a^4*b - 2*a^3*b^2 + a^2*b^3)*d
*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b - 2*a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4 + 2*(2*a^5 - 5*a^4*b + 4*a^3*
b^2 - a^2*b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^4*b - 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (2*a^5 - 5*a^4*b + 4
*a^3*b^2 - a^2*b^3)*d)*sinh(d*x + c)^2 + (a^4*b - 2*a^3*b^2 + a^2*b^3)*d + 4*((a^4*b - 2*a^3*b^2 + a^2*b^3)*d*
cosh(d*x + c)^3 + (2*a^5 - 5*a^4*b + 4*a^3*b^2 - a^2*b^3)*d*cosh(d*x + c))*sinh(d*x + c)), 1/2*(2*a^2*b - 2*a*
b^2 + 2*(2*a^3 - 3*a^2*b + a*b^2)*cosh(d*x + c)^2 + 4*(2*a^3 - 3*a^2*b + a*b^2)*cosh(d*x + c)*sinh(d*x + c) +
2*(2*a^3 - 3*a^2*b + a*b^2)*sinh(d*x + c)^2 - ((2*a*b - b^2)*cosh(d*x + c)^4 + 4*(2*a*b - b^2)*cosh(d*x + c)*s
inh(d*x + c)^3 + (2*a*b - b^2)*sinh(d*x + c)^4 + 2*(4*a^2 - 4*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*(2*a*b - b^2)*
cosh(d*x + c)^2 + 4*a^2 - 4*a*b + b^2)*sinh(d*x + c)^2 + 2*a*b - b^2 + 4*((2*a*b - b^2)*cosh(d*x + c)^3 + (4*a
^2 - 4*a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a^2 + a*b)*arctan(-1/2*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x
 + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*sqrt(-a^2 + a*b)/(a^2 - a*b)))/((a^4*b - 2*a^3*b^2 + a^2*b^
3)*d*cosh(d*x + c)^4 + 4*(a^4*b - 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b - 2*a^3*b^2 +
a^2*b^3)*d*sinh(d*x + c)^4 + 2*(2*a^5 - 5*a^4*b + 4*a^3*b^2 - a^2*b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^4*b - 2*a^3
*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (2*a^5 - 5*a^4*b + 4*a^3*b^2 - a^2*b^3)*d)*sinh(d*x + c)^2 + (a^4*b - 2*a^
3*b^2 + a^2*b^3)*d + 4*((a^4*b - 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^3 + (2*a^5 - 5*a^4*b + 4*a^3*b^2 - a^2*b
^3)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.57, size = 144, normalized size = 1.52 \begin {gather*} \frac {\frac {{\left (2 \, a - b\right )} \arctan \left (\frac {b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt {-a^{2} + a b}}\right )}{{\left (a^{2} - a b\right )} \sqrt {-a^{2} + a b}} + \frac {2 \, {\left (2 \, a e^{\left (2 \, d x + 2 \, c\right )} - b e^{\left (2 \, d x + 2 \, c\right )} + b\right )}}{{\left (a^{2} - a b\right )} {\left (b e^{\left (4 \, d x + 4 \, c\right )} + 4 \, a e^{\left (2 \, d x + 2 \, c\right )} - 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + b\right )}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*((2*a - b)*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/((a^2 - a*b)*sqrt(-a^2 + a*b)) + 2*(
2*a*e^(2*d*x + 2*c) - b*e^(2*d*x + 2*c) + b)/((a^2 - a*b)*(b*e^(4*d*x + 4*c) + 4*a*e^(2*d*x + 2*c) - 2*b*e^(2*
d*x + 2*c) + b)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (b\,{\mathrm {sinh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*sinh(c + d*x)^2)^2,x)

[Out]

int(1/(a + b*sinh(c + d*x)^2)^2, x)

________________________________________________________________________________________